Novikov Conjectures and Relative Hyperbolicity
نویسنده
چکیده
We consider a class of relatively hyperbolic groups in the sense of Gromov and use an argument modeled after Carlsson–Pedersen to prove Novikov conjectures for these groups. This proof is related to [16, 17] which dealt with arithmetic lattices in rank one symmetric spaces and some other arithmetic groups of higher rank. Here we view the rank one lattices in this different larger context of relative hyperbolicity which also includes fundamental groups of pinched hyperbolic manifolds. Another large family of groups from this class is produced using combinatorial hyperbolization techniques.
منابع مشابه
Large scale geometry, compactifications and the integral Novikov conjectures for arithmetic groups
The original Novikov conjecture concerns the (oriented) homotopy invariance of higher signatures of manifolds and is equivalent to the rational injectivity of the assembly map in surgery theory. The integral injectivity of the assembly map is important for other purposes and is called the integral Novikov conjecture. There are also assembly maps in other theories and hence related Novikov and i...
متن کاملStability, hyperbolicity, and zero localization of functions
This workshop, sponsored by AIM and NSF, was devoted to the emerging theory of stability and hyperbolicity of functions. These notions are well known in the univariate setting, where stability means that all zeros lie in the left-half plane and hyperbolicity means that all zeros are real [CM, Post, Fisk, Rah]. The multivariate generalizations go back to 1950s and are being actively explored now...
متن کاملN ov 2 00 4 The Borel / Novikov conjectures and stable diffeomorphisms of 4 - manifolds
Two 4-dimensional manifolds M and N are stably diffeomorphic if for some nonnegative integers r and s, the connected sum M#r(S×S) is diffeomorphic to N#s(S× S). This sort of stabilization plays a fundamental role in 4-dimensional topology, see, for example [W1], [C-S]. In this paper we make the following two conjectures, relate them to standard conjectures in manifold theory, and thereby prove ...
متن کاملun 2 00 4 The Borel / Novikov conjectures and stable diffeomorphisms of 4 - manifolds
Two 4-dimensional manifolds M and N are stably diffeomorphic if for some nonnegative integers r and s, the connected sum M#r(S×S) is diffeomorphic to N#s(S× S). This sort of stabilization plays a fundamental role in 4-dimensional topology, see, for example [W1], [C-S]. In this paper we make the following two conjectures, relate them to standard conjectures in manifold theory, and thereby prove ...
متن کاملOn Novikov-type Conjectures
This paper is based on lectures given by the second author at the 2000 Summer conference at Mt. Holyoke. We also added a brief epilogue, essentially “What there wasn’t time for.” Although the focus of the conference was on noncommutative geometry, the topic discussed was conventional commutative motivations for the circle of ideas related to the Novikov and Baum-Connes conjectures. While the ar...
متن کامل